
https://definitesuccess.in

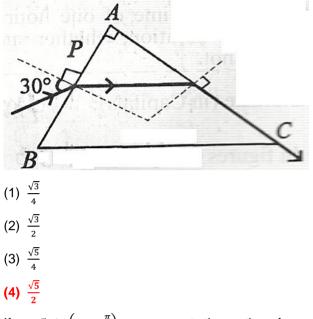
NEET-2024 SET (T4)

Answers are mark with Bold Red

Physics: Section -A (Q. No. 1 to 35)

- The moment of inertia of a thin rod about an axis passing through its mid point and perpendicular to the rod is 2400g cm². The length of the 400 g rod is nearly
 - (1) 20.7 cm
 - (2) 72.0 cm
 - (3) 8.5 cm
 - (4) 17.5 cm
- A bob is whirled in a horizontal plane by means of a string with an initial speed of ω rpm. The tension in the string is T. If speed becomes 2 ω while keeping the same radius, the tension in the string becomes:
 - (1) $\frac{T}{4}$
 - (2) $\sqrt{2}T$
 - (3) T
 - (4) 4*T*
- **3.** A thermodynamics system is taken through the cycle *abcda*. The work done by the gas along the path *bc* is:

- (3) Zero
- (4) 30*J*
- $\mathbf{I}. \quad \overset{290}{\scriptscriptstyle 82} X \xrightarrow{a} Y \xrightarrow{e^+} Z \xrightarrow{\beta^-} P \xrightarrow{e^-} \mathbf{Q}$

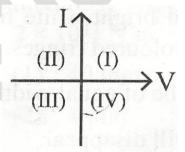

In the nuclear emission stated above, the mass number and atomic number of the product *Q* respectively, are:

- (1) 288, 82
- (2) 286, 81
- (3) 280, 81
- (4) 286, 80
- An unpolarized light beam strikes a glass surface at Brewster's angle. Then
 - Both the reflected and refracted light will be completely polarized
 - (2) The reflected light will be completely polarised but the refracted light will be partially polarised.
 - (3) The reflected light will be partially polarised
 - (4) The refracted light will be completely polarised
- **6.** If *c* is the velocity of light in free space, the correct statements about photon among the following are:
 - A. The energy of a photon in E = hv
 - B. The velocity of a photon is c
 - C. The momentum of a photon, $p = \frac{hv}{c}$
 - D. In a photon-electron collision, both total energy and total momentum are conserved
 - E. Photon possesses positive charge

Choose the correct answer from the options given below:

- (1) A, C and D only
- (2) A, B, D and E only
- (3) A and B only
- (4) A, B, C and D only
- 7. Two bodies A and B of same mass undergo completely inelastic one dimensional collision. The body A moves with velocity v₁ while body B is at rest before collision. The velocity of the system after collision is v₂. The ratio v₁: v₂ is:
 - (1) 4:1
 - (2) 1:4
 - (3) 1:2
 - (4) 2:1

8. A light ray enters through a right angled prism at point *P* with the angle of incidence 30° as shown in figure. It travels through the prism parallel to its base *BC* and emerges along the face *AC*. The refractive index of the prism is:

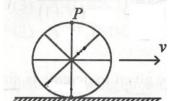

- **9.** If $x = 5 \sin\left(\pi t + \frac{\pi}{3}\right) m$ represents the motion of a particle executing simple harmonic motion, the amplitude and time period of motion, respectively, are:
 - (1) 5 cm, 1 s
 - (2) 5 m, 1 s
 - (3) 5 cm, 2 s
 - (4) 5 m, 2 s
- **10.** At any instant of time *t*, the displacement of any particle is given by 2t 1 (SI unit) under the influence of force of 5N. The value of instantaneous power is (in SI unit):
 - (1) 7
 - (2) 6
 - (3) 10
 - (4) 5
- **11.** A tightly wound 100 turns coil of radius 10 cm carries a current of 7 A. The magnitude of the magnetic field at the centre of the coil is (Take permeability of free space as $4\pi \times 10^{-7}$ SI units).
 - (1) 4.4 mT
 - (2) 44 T
 - (3) 44 mT
 - (4) 4.4 T
- **12.** A particle moving with uniform speed in a circular path maintains:
 - (1) Constant velocity but varying acceleration

- (2) Varying velocity and varying acceleration
- (3) Constant velocity
- (4) Constant acceleration
- **13.** A logic circuit provides the output *Y* as per the following truth table:

А	В	Y			
0	0	1			
0	1	0			
1	0	1			
1	1	0			
The Expression					

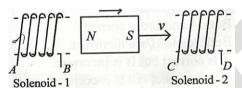
The Expression for the output Y is:

- (1) B
 (2) B
- Z) D
- (3) $A.B + \bar{A}$
- (4) $A.\overline{B} + \overline{A}$
- 14. Consider the following statements A and B and identify the correct answer:


- .A. For a solar-cell, the I-V characteristics lies in the IV quadrant of the given graph.
- B. In a reverse biased pn junction diode, the current measured in (μA), is due to majority charge carries
- (1) Both A and B are correct
- (2) Both A and B are incorrect
- (3) A is correct but B is incorrect
- (4) A is incorrect but B is correct

15. In an ideal transformer, the turns ratio is $\frac{N_p}{N_s} = \frac{1}{2}$. The ratio

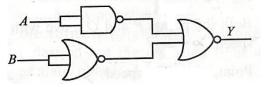
 $V_s: V_p$ is equal to (the symbols carry their usual meaning)


- (1) 1:1
- (2) 1:4
- (3) 1:2
- (4) 2:1

16. A wheel of a bullock cart is rolling on a level road as shown in the figure below. If its liner speed is v in the direction shown, which one of the following options in correct (P and Q are any highest and lowest points on the wheel, respectively)?

- (1) Both the points P and Q move with equal speed
- (2) Points P has zero speed
- (3) Point P moves slower than point Q
- (4) Point P moves faster than point Q
- 17. If the monochromatic source in Youngs's double slit experiment is replaced by white light, then
 - (1) There will be a central bright white fringe surrounded by a few coloured fringes.
 - (2) All bright fringes will be of equal width
 - (3) Interference pattern will disappear
 - (4) There will be a central dark fringe surrounded by a few coloured fringes

18.

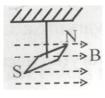


In the above diagram, a strong, a strong bar magnet is moving towards solenoid-2 from solenoid-1. The direction 22. In a uniform magnetic field of 0.049 T, a magnetic needle of induced current in solenoid-1 and that in solenoid-2, respectively, are through the directions:

- (1) AB and CD
- (2) BA and DC
- (3) AB and DC
- (4) BA and CD
- **19.** In a vernier calipers, (N + 1) divisions of vernier scale coincide with N divisions of main scale. If 1 MSD represents 0.1 mm, the vernier constant (in cm) is:
 - (1) 100 N
 - (2) 10(N+1)
 - (3) $\frac{1}{10N}$
 - (4) $\frac{1}{100(N+1)}$

20. The output (Y) of the given logic gate in similar to the

output of an/a:



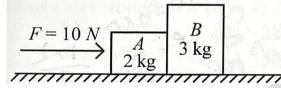
- (1) OR gate
- (2) AND gate
- (3) NAND gate
- (4) NOR gate
- 21. Given below are two statement: one is labelled as Assertion A and the other is labelled as Reason R. Assertion A: The potential (V) at any axial point, at 2 m distance(r) from the centre of the dipole of dipole moment vector \vec{P} of magnitude, 4×10^{-6} C m, is $\pm 9 \times 10^{3} V.$

(Take $\frac{1}{4\pi\epsilon_0} = 9 \times 10^9$ SI units)

Reason R: $V = \pm \frac{2P}{4\pi\epsilon_0 r^2}$, where *r* is the distance of any axial point, situated at 2 m form the centre of the dipole. In the light of the above statements, choose the correct answer from the options given below:

- (1) A is true but R is false
- (2) A is false but R is true
- (3) Both A and R are true and R is the correct explanation of A
- (4) Both A and R are true and R is NOT the correct explanation of A
- performs 20 complete oscillations in 5 seconds as shown. The moment of inertia of the needle is 9.8×10^{-6} kg m^2 . If the magnitude of magnetic moment of the needle is $x \times 10^{-5}$ Am², then the value of 'x' is:

- (1) $50 \pi^2$
- (2) 1280 π^2
- (3) $5\pi^2$
- (4) $128 \pi^2$


23. Match list-I with List-II.

 	 	•	-	•	
				•	

	List-I		List-II	
	(Material)		(susceptibility (x))	
Α.	Diamagnetic	I.	x = 0	
В.	Ferromagnetic	II.	$0 > x \ge -1$	
C.	Paramagnetic	III.	<i>x</i> >> 1	
D.	Non-magnetic	IV.	$0 < x < \epsilon$ (a small	
			positive number)	

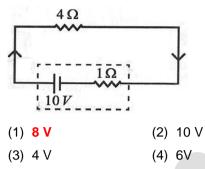
Choose the correct answer from the options given below:

- (1) A-III, B-II, C-I, D-IV
- (2) A-IV, B-III, C-II, D-I
- (3) A-II, B-III, C-IV, D-I
- (4) A-II, B-I, C-III, D-IV
- 24. A horizontal force 10 N is applied to a block A as shown in figure. The mass of blocks A and B are 2kg and 3kg, respectively. The blocks slide over a frictionless surface. The force exerted by block A on block B is:

(1) 6 N

- (2) 10 N
- (3) Zero
- (4) 4 N
- 25. Given below are two statements:

Statement I: atoms are electrically neutral as they contain equal number of positive and negative charges.


Statement II: Atoms of each element are stable and emit their characteristic spectrum.

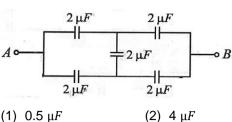
In the light of the above statements, choose the most appropriate answer from the options given below:

(1) Statement I is correct but Statement II is incorrect

- (2) Statement I is incorrect but Statement II is correct
- (3) Both Statement I and Statement II are correct
- (4) Both Statement I and Statement II are incorrect

26. The terminal voltage of the battery, whose emf is 10Vand internal resistance 1Ω , when connected through an external resistance of 4 Ω as shown in the figure is:

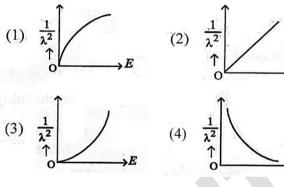
- **27.** A wire of length l' and resistance 100 Ω is divided into 10 equal parts. The first 5 parts are connected in series while the next 5 parts are connected in parallel. The two combinations are again connected in series. The resistance of this final combination is:
 - (1) 55 Ω (2) 60 Ω
 - (4) 52 Ω (3) 26 Ω
- 28. The maximum elongation of a steel wire of 1 m length if the elastic limit of steel and its Young's modulus, respectively, are 8×10^8 N m⁻² and 2×10^{11} N m⁻², is:
 - (1) 40 mm (2) 8 mm
 - (4) 0.4 mm (3) 4 mm
- 29. A thin flat circular disc of radius 4.5 cm is placed gently over the surface of water. If surface tension of water is 0.07 Nm⁻¹, then the excess force required to take it away from the surface is:
 - (1) 1.98 mN (2) 99 N
 - (3) 19.8 mN (4) 198 N
- 30. Match List I with List II.


List -I		List-II
(Spectral Lines of		(Wavelengths (nm))
Hydrogen for		
transitions from)		
$n_2 = 3 \ to \ n_1 = 2$	Ι.	410.2
$n_2 = 4 \ to \ n_1 = 2$	II.	434.1
$n_2 = 5 \ to \ n_1 = 2$	III.	656.3
$n_2 = 6 \ to \ n_1 = 2$	IV.	486.1
	(Spectral Lines of Hydrogen for transitions from) $n_2 = 3 \text{ to } n_1 = 2$ $n_2 = 4 \text{ to } n_1 = 2$ $n_2 = 5 \text{ to } n_1 = 2$	(Spectral Lines of Hydrogen for transitions from)Image: Hydrogen for $n_2 = 3 \text{ to } n_1 = 2$ $n_2 = 3 \text{ to } n_1 = 2$ I. $n_2 = 4 \text{ to } n_1 = 2$ II. $n_2 = 5 \text{ to } n_1 = 2$ III.

Choose the correct answer from the options given below:

- (1) A-IV, B-III, C-I, D-II
- (2) A-I, B-II, C-III, D-IV
- (3) A-II, B-I, C-IV, D-III
- (4) A-III, B-IV, C-II, D-I

Δ


31. In the following circuit, the equivalent capacitance between terminal A and terminal B is:

- (3) 2 µF (4) 1 μ*F*
- **32.** The mass of a planet is $\frac{1}{10}$ that of the earth and its diameter is half that of the earth. The acceleration due to gravity on that planet is:
 - (1) $4.9 \ ms^{-2}$ (2) $3.92 m s^{-2}$
 - (3) 19.6 ms^{-2} (4) $9.8 m s^{-2}$
- **33.** The graph which shows the variation of $\left(\frac{1}{\lambda^2}\right)$ and its

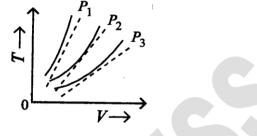
kinetic energy, E is (where λ is de Broglie wavelength of a free particle):

>E

(1) (2) (3) (4)

- 34. The quantities which have the same dimensions as those of solid angle are:
 - (1) strain and arc
 - (2) angular speed and stress

(3) strain and angle

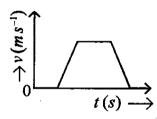

- (4) stress and angle
- 35. A thin spherical shell is charged by some source. The potential difference between the two points C and P(in V) shown in the figure is:

(2) zero

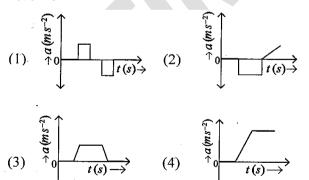
(4) 1×10^5

(Take $\frac{1}{4\pi\epsilon_0} = 9 \times 10^9$ SI units) $q = 1 \mu C$ (1) 0.5×10^5 (3) 3×10^5

- Physics: Section -B (Q. No. 36 to 50)
- 36. The following graph represents the T-V curves of an ideal gas (where T is the temperature and V the volume) at three pressures P_1 , P_2 and P_3 compared with those of Charles's law represented as dotted lines.

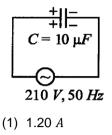


Then the correct relations is:


(1) $P_2 > P_1 > P_3$ (2) $P_1 > P_2 > P_3$ (3) $P_3 > P_2 > P_1$ (4) $P_1 > P_3 > P_2$

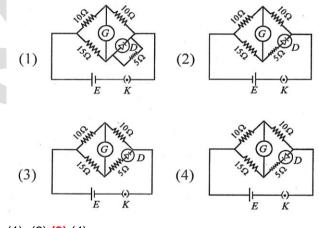
- 37. The property which is not of an electromagnetic wave travelling in free space is that:
 - (1) they travel with a speed equal to $\frac{1}{\sqrt{\mu_0\epsilon_0}}$
 - (2) they originate from charges moving with uniform speed.
 - (3) they are transverse in nature
 - (4) they energy density in electric field is equal to energy density in magnetic field.
- 38. A small telescope has an objective of focal length 140 cm and an eye piece of focal length 5.0 cm. The magnifying power of telescope for viewing a distant object is:
 - (1) 17 (2) 32
 - (3) 34 (4) 28
- 39. A parallel plate capacitor is charged by connecting it to a battery through a resistor. If I is the current in the circuit, then in the gap between the plates
 - (1) displacement current of magnitude equal to I flows in a direction opposite to that of I.
 - (2) displacement current of magnitude greater than I flows but can be in any direction.
 - (3) there is no current.
 - (4) displacement current of magnitude equal to I flows in the same direction as I.

- **40.** A metallic bar of Young's modulus, 0.5×10^{11} Nm⁻² and coefficient of linear thermal expansion $10^{-5} \circ C^{-1}$, length 1m and area of cross-section 10^{-3} m² is heated from 0°C to 100°C without expansion or bending. The compressive force developed in it is:
 - (1) 100×10^3 N (2) 2×10^3 N
 - (4) 50×10^3 N (3) 5×10^3 N
- 41. Two heaters A and B have power rating of 1 kW and 2 kW, respectively. Those two are first connected in series and then in parallel to a fixed power source. The ratio of power outputs for these two cases is:
 - (2) 2:3 (1) 1:2
 - (3) 1:1 (4) 2:9
- 42. An iron bar of length L has magnetic moment M. It is bent at the middle of its length such that the two arms make an angle 60° with each other. The magnetic moment of this new magnet is:
 - (2) $\frac{M}{\sqrt{3}}$ (1) 2M(4) $\frac{M}{2}$ (3) M
- **43.** The velocity (v) time (t) plot of the motion of a body is shown below:



The acceleration (a) – time (t) graph that best suits this motion is:


```
(1) (2) (3) (4)
```


44. A 10 µF capacitor is connected to a 210 V, 50 Hz source as shown in figure. The peak current in the circuit is nearly (π =3.14):

- (3) 0.58 A
- (2) 0.35 A (4) 0.93 A
- **45.** A force defined by $F = \alpha t^2 + \beta t$ acts on a particle at a given time t. The factor which is dimensionless, if α and β are constants, is:
 - (1) $\alpha\beta t$

46. Choose the correct circuit which can achieve the bridge balance.

(1) (2) (3) (4)

- **47.** If the mass of the bob in a simple pendulum is increased to thrice its original mass and its length is made half its original length, then the new time period of oscillation is $\frac{x}{2}$ times its original time period. Then the value of x is:
 - (1) $2\sqrt{3}$ (2) 4
 - (4) $\sqrt{2}$ (3) $\sqrt{3}$

- **48.** If the plates of a parallel plate capacitor connected to a
 - battery are moved close to each other, then A. the charge stored in it, increases.
 - B. the energy stored in it, decreases.
 - C. its capacitance increases
 - D. the ratio of charge to its potential remains the same.
 - E. the product of charge and voltage increases.

Choose the most appropriate answer from the options given below:

- (1) B, D and E only (2) A, B and C only
- (3) A, B and E only (4) A, C and E only
- **49.** The minimum energy required to launch a satellite of mass *m* from the surface of earth of mass *M* and radius *R* in a circular orbit at an altitude of 2*R* from the surface of the earth is:
 - (1) $\frac{GmM}{2R}$ (2) $\frac{GmM}{3R}$ (3) $\frac{5GmM}{6R}$ (4) $\frac{2GmM}{3R}$
- **50.** A sheet is placed on a horizontal surface in front of a strong magnetic pole. A force is needed to:
 - A. hold the sheet there if it is magnetic.
 - B. hold the sheet there if it is non-magnetic.
 - C. move the sheet away from the pole with uniform velocity if it is conducting.
 - D. move the sheet away from the pole with uniform velocity if it is both, non-conducting and non-polar.

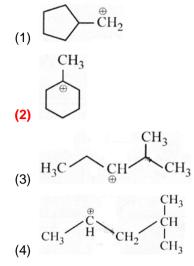
Choose the correct statement(s) from the options given below:

- (1) A, C and D only
- (2) C only
- (3) B and D only
- (4) A and C only

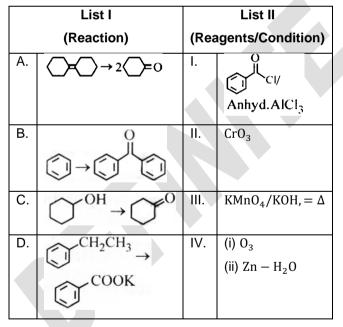
- Chemistry: Section-A (Q. No. 51 to 85)
- 51. Match List I with List II.

	List I		List II				
	(Process)		(Conditions)				
Α.	Isothermal	Ι.	No heat exchange				
	process						
В.	Isochoric	II.	Carried out at constant				
	process		temperature				
C.	Isobaric	III.	Carried out at constant				
	process		volume				
D.	Adiabatic	IV.	Carried out at constant				
	process		pressure				

Choose the correct answer from the options given below


- (1) A-I, B-II, C-III, D-IV
- (2) A-II, B-III, C-IV, D-I
- (3) A-IV, B-III, C-II, D-I
- (4) A-IV, B-II, C-III, D-I
- 52. Match List I with List II.

	List I			List II
\mathbf{P}	(Complex)			ype of isomerism)
Α	•	$[Co(NH_3)_5(NO_2)]Cl_2$	I.	Solvate isomerism
В	•	$[Co(NH_3)_5(SO_4)]Br$	II.	Linkage isomerism
С		$[Co(NH_3)_6] [Cr(CN)_6]$	III.	Ionization isomerism
D	•	$[Co(H_2O)_6]Cl_3$	IV.	Coordination
				isomerism


Choose the correct answer from the options given below

- (1) A-I, B-IV, C-III, D-II
- (2) A-II, B-IV, C-III, D-I
- (3) A-II, B-III, C-IV, D-I
- (4) A-I, B-III, C-IV, D-II

53. The most stable carbocation among the following is :

- 54. On heating, some solid substances change from solid to vapour state without passing through liquid state. The technique used for the purification of such solid substances based on the above principle is known as
 - (1) Distillation
 - (2) Chromatography
 - (3) Crystallization
 - (4) Sublimation
- 55. Match List I with List II.

Choose the correct answer from the options given below .

(1) A-IV, B-I, C-II, D-III

- (2) A-I, B-IV, C-II, D-III
- (3) A-IV, B-I, C-III, D-II
- (4) A-III, B-I, C-II, D-IV

 NO_2 (1) HO (2) HF OH (3) NO_2 H (4) (1) (2) (3) (4) 57. The highest number of helium atoms is in (1) 4 g of helium (2) 2.271098 L of helium at STP (3) 4 mol of helium (4) 4 u of helium **58.** For the reaction $2A \rightleftharpoons B + C$, $K_c = 4 \times 10^{-3}$. At a given time, the composition of reaction mixture is : $[A] = [B] = [C] = 2 \times 10^{-3} \text{M}.$ Then, which of the following is correct? (1) Reaction has a tendency to go in backward direction (2) Reaction has gone to completion in forward direction (3) Reaction is at equilibrium (4) Reaction has a tendency to go in forward direction **59.** The E^o value for the Mn^{3+}/Mn^{2+} couple is more positive than that of Cr^{3+}/Cr^{2+} or Fe^{3+}/Fe^{2+} due to change of (1) d^4 to d^5 configuration (2) d^3 to d^5 configuration (3) d^5 to d^4 configuration (4) d⁵ to d² configuration 60. Fehling's solution 'A' is (1) alkaline solution of sodium potassium tartrate (Rochelle's salt) (2) aqueous sodium citrate (3) aqueous copper sulphate (4) alkaline copper sulphate

56. Intramolecular hydrogen bonding is present in

61. Match List I with List II.

L	.ist I	List II		
(Con	npound)	(Shape/geometry)		
Α.	NH ₃	I.	Trigonal Pyramidal	
В.	BrF ₅	II.	Square Planar	
C.	XeF ₄	III.	Octahedral	
D.	SF ₆	IV.	Square Pyramidal	

Chose the correct answer from the options given below:

- (1) A-III, B-IV, C-I, D-II
- (2) A-II, B-III, C-IV, D-I
- (3) A-I, B-IV, C-II, D-III

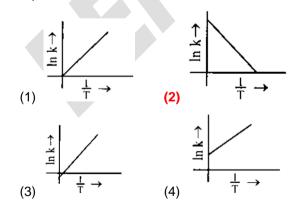
(4) A-II, B-IV, C-III, D-I

62. Given below are two statements :

Statement I : Both $[Co(NH_3)_6]^{3+}$ and $[CoF_6]^{3-}$ complexes are octahedral but differ in their magnetic behaviour.

Statement II : $[Co(NH_3)_6]^{3+}$ is diamagnetic whereas $[CoF_6]^{3-}$ is paramagnetic.

In the light of the above statements, choose the *correct* answer from the options given below:


- (1) Statement I is true but Statement II is false.
- (2) Statement I is false but Statement II is true.
- (3) Both Statement I and Statement II are true.
- (4) Both Statement I and Statement II are false.
- 63. Among Group 16 elements, which one does NOT show 2 oxidation state?

(2) Po

(1) Te

(3) O

- (4) Se
- **64.** Which plot of $\ln k vs \frac{1}{T}$ is consistent with Arrhenius equation?

n Ans	wer	SET –T4
	65.	Arrange the following elements in increasing order of
		electronegativity:
		N, O, F, C, Si
		Choose the correct answer from the options given below
		:
		(1) O < F < N < C < Si
		(2) F < O < N < C < Si
		(3) Si < C < N < O < F
w:		(4) Si < C < O < N < F
	66.	Given below are two statements:
		Statement I: The boiling point of three isomeric
		pentanes follows the order
		n -pentane > isopentane > neopentane
		statement II : When branching increases, the molecule
		attains a shape of sphere. This results in smaller surface
		area for contact, due to which the intermolecular forces
		between the spherical molecules are weak, thereby
		lowering the boiling point.
		In the light of the above statements, choose the most
at l		appropriate answer from the options given below:
ect		(1) Statement I is correct but Statement II is incorrect
		(2) Statement I is incorrect but Statement II is correct.
		(3) Both Statement I and Statement II are correct.
		(4) Both Statement I and Statement II are incorrect
	67.	Which reaction is NOT a redox reaction?
		(1) $H_2 + Cl_2 \longrightarrow 2 HCl$
- wo		(2) $BaCl_2 + Na_2SO_4 \longrightarrow BaSO_4 + 2NaCl$
		(3) $Zn + CuSO_4 \longrightarrow ZnSO_4 + Cu$
		(4) $2 KClO_3 + l_2 \longrightarrow 2 KIO_3 + Cl_2$
	68.	Arrange the following statements in increasing order of
		first ionization enthalpy:
		Li, Be, B, C, N
		Choose the correct answer from the options given below:
		(1) Li < Be < C < B < N
		(2) Li < Be < N < B< C
		(3) Li < Be < B < C < N
		(4) Li < B < Be < C < N

69. Which one of the following alcohols reacts

instantaneously with Lucas reagent

$$\begin{array}{c} CH_3 - CH - CH_2OH \\ (1) \\ CH_3 \\ CH_3 \\ (2) \\ CH_3 - C - OH \\ CH_3 \\ (3) \\ CH_3 - CH_2 - CH_2 - CH_2OH \\ CH_3 - CH_2 - CH - OH \\ (4) \\ (4) \\ \end{array}$$

 CH_2

70. Match List I with List II.

	List I	List II				
	(Molecule)	(Number of types of bond/s				
		between to carbon atoms				
Α.	Ethane	Ι.	One σ -bond and two			
			π -bonds			
В.	Ethene	11.	Two π -bonds			
C.	Carbon	III.	One σ -bond			
	molecule, C_2					
D.	Ethyne	IV.	One σ -bond and one			
			π -bond			

Choose the correct answer from the options given below:

(1) A-III, B-IV, C-II, D-I

- (2) A-III, B-IV, C-I, D-II
- (3) A-I, B-IV, C-II, D-III
- (4) A-IV, B-III, C-II, D-I
- 71. Given below are two statements:

Statements I : The boiling point of hydrides of Group 16 elements follow the order

$$H_2 0 > H_2 T e > H_2 S e > H_2 S.$$

Statement II : On the basis of molecular mass, H_2O is expected to have lower boiling point than the other members of the group but due to the presence of extensive H-bonding in H_2O , it has higher boiling point. In the light of the above statements, choose the *correct* answer from the options given below:

- (1) Statement I is true but Statement II is false.
- (2) Statement I is false but Statement II is true.
- (3) Both Statement I and Statement II are true.
- (4) Both Statement I and Statement II are false.

72. Given below are two statements:

Statement I : Aniline does not undergo Friedel-Crafts alkylation reaction.

Statement II : Aniline cannot be prepared through Gabriel synthesis.

In the light of the above statements, choose the *correct* answer from the options given below:

- (1) Statement I is correct but Statement II is false.
- (2) Statement I is incorrect but Statement II is true.
- (3) Both Statement I and Statement II are true.
- (4) Both Statement I and Statement II are false.
- 73. Match List I with List II.

	List I	List II		
(Conversion)		(Number of Faraday		
		requ	ired)	
Α.	1 mol of $H_2 0$ to O_2	Ι.	3F	
В.	1 mol of MnO_4^- to Mn^{2+}	II.	2F	
C.	1.5 mol of Ca from	III.	1F	
	molten CaCl ₂			
D.	1 mol of FeO to Fe_2O_3	IV.	5F	

Choose the correct answer from the options given below:

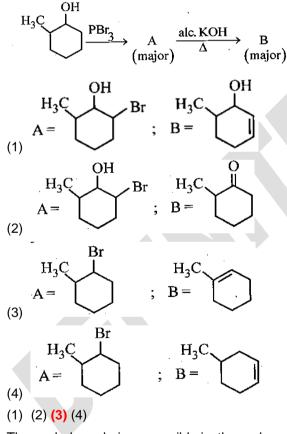
- (1) A-II, B-III, C-I, D-IV
- (2) A-III, B-IV, C-II, D-I
- (3) A-II, B-IV, C-I, D-III
- (4) A-III, B-IV, C-I, D-II
- **74.** In which of the following equilibria K_p and K_c are **NOT** equal?
 - (1) $CO_{(g)} + H_2O_{(g)} \rightleftharpoons CO_{2(g)} + H_{2(g)}$
 - (2) $2 BrCl_{(g)} \rightleftharpoons Br_{2(g)} + Cl_{2(g)}$
 - (3) $PCl_{5(g)} \rightleftharpoons PCl_{3(g)} + Cl_{2(g)}$
 - (4) $H_{2(g)} + I_{2(g)} \rightleftharpoons 2HI_{(g)}$

(3) B > A > C

75. The Henry's law constant (K_H) values of three gases (A, B, C) in water are 145, 2 × 10⁻⁵ and 35 kbar, respectively. The solubility of these gases in water follow the order :

(4) B > C > A

(1) A > C > B (2) A > B > C


Definite Success Classes NEET – 2024 With Ans	swer S	ET ·	-T4		
76. Identify the correct reagents that would bring about the	80. T	he r	eagents with which	n gluc	ose does not react to give
following transformation.	th	ne co	orresponding tests/	/prod	ucts are
\bigcirc - CH ₂ - CH = CH ₂ \rightarrow	A	. Т	ollen's reagent		
$\bigcirc - CH_2 - CH = CH_2 \rightarrow$ $\bigcirc - CH_2 - $	В	. S	chiff's reagent		
\Box $CH_2 - CH_2 - CH_2$	C	;. H	ICN		
(1) (i) <i>BH</i> ₃	D). N	₩ ₂ OH		
(ii) $H_2 O_2 / \frac{\Theta}{OH}$	E	. N	IaHSO ₃		
011	C	hoo	se the correct optic	ons fr	om the given below:
(iii) alk. $KMnO_4$	(1	1) B	and E	(2) I	E and D
(iv) H ₃ O⊕	(3	3) B	and C	(4) /	A and D
(2) (i) $H_2 O/H^+$	81. 'S	Spin	only' magnetic m	omer	it is same for which of the
(ii) PCC			ving ions?		
(3) (i) $H_2 O/H^+$. <i>T</i>		В. (
(ii) <i>CrO</i> ₃			1n ²⁺	D. 1	$=e^{2+}$
(4) (i) BH_3		. <i>S</i>			
(ii) $H_2O_2/\frac{\Theta}{OH}$				oriate	answer from the options
(iii) PCC	-		below:		
77. The compound that will undergo S_N^1 reaction with the			and C only		
faster rate is			and D only		
Dr CH ₃	-		and D only		
		· ·	and E only h List I with List II.		
Br	02. IV	alci	List I	1	List II
(1) (2)			Quantum		Information provided
Br Br Br	ŀ		Number		
		A.	m _l	I.	Shape of orbital
78. The energy of an electron in the ground state $(n = 1)$ for		В.	$\frac{m_l}{m_s}$	 II.	Size of orbital
He^+ ion is $-x$ J, then that for an electron in n = 2 state for		С.	l	···· III.	Orientation of orbital
Be^{3+} ion in J is:		о. D.	n	IV.	Orientation of spin of
(1) $-4x$ (2) $-\frac{4}{2}x$		0.			electron
(1) $-4x$ (2) $-\frac{4}{9}x$ (3) $-x$ (4) $-\frac{x}{9}$		Choo	ose the correct ans	wer f	rom the options given
2		elov			
79. A compound with a molecular formula of C_6H_{14} has two tertiary carbons. Its IUPAC name is:			-III, B-IV, C-II, D-I		
(1) 2, 3-dimethylbutane					
(2) 2, 2-dimethylbutane	(∠	2) A	-II, B-I, C-IV, D-III		
			I-II, B-I, C-IV, D-III		
(3) n-bexane	(3	3) A			
(3) n-hexane(4) 2-methylpentane	(3	3) A 4) A	I, B-III, C-II, D-IV III, B-IV, C-I, D-II	xide v	was treated with 25 mL of
(3) n-hexane(4) 2-methylpentane	(3 (4 83. 1	3) A 4) A gra	I-I, B-III, C-II, D-IV I <mark>-III, B-IV, C-I, D-II</mark> m of sodium hydro:		was treated with 25 mL of s of sodium hydroxide left
	(3 (4 83. 1 0	3) A 1) A gra .75	I-I, B-III, C-II, D-IV I <mark>-III, B-IV, C-I, D-II</mark> m of sodium hydro:		
	(3 (4 83. 1 0 u	3) A 4) A gra .75 I nrea	I-I, B-III, C-II, D-IV I-III, B-IV, C-I, D-II m of sodium hydro: M HCI solution, the	mas	
	(3 (4 83. 1 0. ui (1	 A) A gra .75 nrea 1) Z 	A-I, B-III, C-II, D-IV A-III, B-IV, C-I, D-II m of sodium hydro: M HCI solution, the acted is equal to	mas (2) 2	s of sodium hydroxide left
	(3 (4 83. 1 0 uu (1 (3	3) A gra .75 nrea 1) Z 3) 7	I-I, B-III, C-II, D-IV I-III, B-IV, C-I, D-II Im of sodium hydro: M HCI solution, the acted is equal to fero mg 50 mg	(2) 2 (4) 2	s of sodium hydroxide left 200 mg

Definite Success Classes NEET – 2024 With Answer SET –T4 $N_2 = 3.0 \times 10^{-3} M$, $O_2 = 4.2 \times 10^{-3} M$ and B. Temperature of a crystalline solid lowered from 130 K to 0 K. $NO = 2.8 \times 10^{-3} M.$ C. $2NaHCO_{3(s)} \rightarrow Na_2CO_{3(s)} + CO_{2(a)} + H_2O_a$ $2NO_{(g)} \rightleftharpoons N_{2(g)} + O_{2(g)}$ D. $Cl_{2(g)} \rightarrow 2Cl_{(g)}$ Choose the correct answer from the options given below: (1) A, C and D (2) C and D (1) 0.8889(2) 0.717

- (3) A and C (4) A, B and D
- 85. Activation energy of any chemical reaction can be calculated if one knows the value of
 - (1) orientation of reactant molecules during collision.
 - (2) rate constant at two different temperatures.
 - (3) rate constant at standard temperature.
 - (4) probability of collision.

Chemistry: Section -B (Q. No. 86 to 100)

86. Major products A and B formed in the following reaction sequence are

87. The work done during reversible isothermal expansion of one mole of hydrogen gas at 25°C from pressure of 20 atmosphere to 10 atmosphere is:

(Given R = 2.0 cal $K^{-1}mol^{-1}$)

(1) 413.14 calories (2) 100 calories

88. Consider the following reaction in a sealed vessel at equilibrium with concentrations of

If 0.1 mol L^{-1} of $NO_{(q)}$ is taken in a closed vessel, what will be degree of dissociation (α) of $NO_{(q)}$ at equilibrium? (3) 0.00889 (4) 0.0889 89. For the given reaction: $C = CH KMnO_4/H^+$ (major product) 'P' is OH OH CH-CH (1)CHO (3) COOH (4)(1) (2) (3) (4) 90. The pair of lanthanoid ions which are diamagnetic is (1) Gd^{3+} and Eu^{3+} (2) Pm^{3+} and Sm^{3+} (3) Ce^{4+} and Yb^{2+} (4) Ce^{3+} and Eu^{2+} 91. Identify the major product C formed in the following reaction sequence: $CH_3 - CH_2 - CH_2 - I \xrightarrow{NaCN} A$

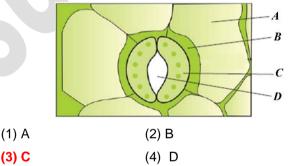
OH ⁻	NaOH	С	
Partial hydrolysis ^B	Br ₂	→(major)	
(1) butanamide	(2) α-b	oromobutanoio	c acid
(3) propylamine	(4) but	ylamine	

- 92. The products A and B obtained in the following reactions, respectively, are $3ROH + PCl_3 \rightarrow 3RCl + A$
 - $ROH + PCl_5 \rightarrow RCl + HCl + B$
 - (1) H_3PO_4 and $POCl_3$
 - (2) H_3PO_3 and $POCl_3$
 - (3) $POCl_3$ and H_3PO_3
 - (4) $POCl_3$ and H_3PO_4

- Definite Success Classes NEET 2024 With Answer SET –T4 93. Given below are certain cations. Using inorganic qualitative analysis, arrange them in increasing group number from 0 to VI. A. *Al*³⁺ B. Cu²⁺ C. Ba²⁺ D. Co²⁺ E. *Mg*²⁺ Choose the correct answer from the options given below: (1) E, C, D, B, A (2) E, A, B, C, D (3) B, A, D, C, E (4) B, C, A, D, E ligands. 94. A compound X contains 32% of A, 20% of B and remaining percentage of C. Then, the empirical formula of X is: (Given atomic masses of A = 64; B = 40; C = 32 u) (1) AB_2C_2 (2) ABC₄ (3) A_2BC_2 (4) ABC_3 95. The rate of a reaction quadruples when temperature changes from 27°C to 57°C. Calculate the energy of activation. Given R = $8.314 \text{ J K}^{-1} \text{ mol}^{-1}$, log 4 = 0.6021(1) 3.80 kJ/mol (2) 3804 kJ/mol (3) 38.04 kJ/mol (4) 380.4 kJ/mol **96.** The plot of osmotic pressure (Π) vs concentration $(mol L^{-1})$ for a solution gives a straight line with slope 25.73 L bar mol⁻¹. The temperature at which the osmotic pressure measurement is done is: (1) A (Use R = $0.083 \text{ L bar mol}^{-1}\text{K}^{-1}$) (3) C (2) 12.05°C (1) 25.73°C (3) 37°C (4) 310°C 97. During the preparation of Mohr's salt solution (Ferrous ammonium sulphate), which of the following acid is added to prevent hydrolysis of Fe^{2+} ion? (1) dilute nitric acid (2) dilute sulphuric acid (3) dilute hydrochloric acid (4) concentrated sulphuric acid 98. Mass in grams of copper deposited by passing 9.6487 A current through a voltmeter containing copper sulphate solution for 100 seconds is: (Given : Molar mass of Cu : 63 g mol⁻¹, 1F = 96487 C)
 - (1) 31.5 g (2) 0.0315 g
 - (3) 3.15 g (4) 0.315 g
 - 99. Identify the correct answer.
 - (1) Dipole moment of NF_3 is greater than that of NH_3 .

- (2) Three canonical forms can be drawn for CO_3^{2-} ion.
- (3) Three resonance structures can be drawn for ozone.
- (4) BF₂ has non-zero dipole moment.

100. Given below are two statements:

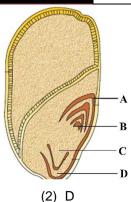

Statement I : $[Co(NH_3)_6]^{3+}$ is a homoleptic complex whereas $[Co(NH_3)_4Cl_2]^+$ is a heteroleptic complex. Statement II: Complex [Co(NH₃)₆]³⁺has only one kind of ligands but $[C_0(NH_3)_4Cl_2]^+$ has more than one kind of

In the light of the above statements, choose the correct answer from the options given below:

- (1) Statement I is true but Statement II is false.
- (2) Statement I is false but Statement II is true.
- (3) Both Statement I and Statement II are true.
- (4) Both Statement I and Statement II are false

Botany : Section A (Q. No 101 to 135)

101. In the given figure, which component has thin outer walls and highly thickened inner walls?


102. A transcription unit in DNA is defined primarily by the three regions in DNA and these are with respect to upstream and down stream end;

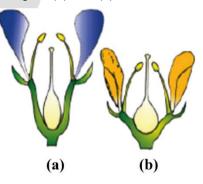
- (1) Inducer, Repressor, Structural gene
- (2) Promotor, Structural gene, Terminator
- (3) Repressor, Operator gene, Structural gene
- (4) Structural gene, Transposons, Operator gene
- 103. The equation of Verhulst-Pearl logistic growth is

$$\frac{\mathrm{dN}}{\mathrm{dt}} = \mathrm{rN}\left[\frac{\mathrm{K}-\mathrm{N}}{\mathrm{K}}\right].$$

From this equation, K indicates:

- (1) Carrying capacity
- (2) Population density
- (3) Intrinsic rate of natural increase
- (4) Biotic potential
- **104.** Identify the part of the seed from the given figure which is destined to form root when the seed germinates.

(3) A (4) B


(1) **C**

- **105.** Inhibition of Succinic dehydrogenase enzyme by malonate is a classical example of:
 - (1) Competitive inhibition
 - (2) Enzyme activation
 - (3) Cofactor inhibition
 - (4) Feedback inhibition
- **106.** A pink flowered Snapdragon plant was crossed with a red flowered Snapdragon plant. What type of phenotype/s is/are expected in the progeny?
 - (1) Only pink flowered plants
 - (2) Red, pink as well as white flowered plants
 - (3) Only red flowered plants
 - (4) Red flowered as well as pink flowered plants
- 107. The type of conservation in which the threatened species are taken out from their natural habitat and placed in special setting where they can be protected and given special care is called;
 - (1) Semi-conservative method
 - (2) Sustainable development
 - (3) In-situ conservation
 - (4) Biodiversity conservation
- **108.** These are regarded as major causes of biodiversity loss:
 - A. Over exploitation
 - B. Co-extinction
 - C. Mutation
 - D. Habitat loss and fragmentation
 - E. Migration
 - Choose the correct option:
 - (1) A, B and E only
 - (2) A, B and D only
 - (3) A, C and D only
 - (4) A, B, C and D only
- **109.** Which of the following are required for the dark reaction of photosynthesis?

- A. Light
- B. Chlorophyll
- **C.** CO₂
- D. ATP
- E. NADPH

Choose the correct answer from the options given below:

- (1) C, D and E only
- (2) D and E only
- (3) A, B and C only
- (4) B, C and D only
- 110. Bulliform cells are responsible for
 - (1) Increased photosynthesis in monocots.
 - (2) Providing large spaces for storage of sugars.
 - (3) Inward curling of leaves in monocots.
 - (4) Protecting the plant from salt stress.
- **111.** Identify the type of flowers based on the position of calyx, corolla and androecium with respect to the ovary from the given figure (a) and (b).

- (1) (a) Perigynous; (b) Epigynous
- (2) (a) Perigynous; (b) Perigynous
- (3) (a) Epigynous; (b) Hypogynous
- (4) (a) Hypogynous; (b) Epigynous
- 112. Which one of the following is not a criterion for

classification of fungi?

- (1) Mode of spore formation
- (2) Fruiting body
- (3) Morphology of mycelium
- (4) Mode of nutrition
- **113.** Hind II always cuts DNA molecules at a particular point called recognition sequence and it consists of:
 - (1) 4 bp (2) 10 bp
 - (3) 8 bp (4) 6 bp
- **114.** Auxin is used by gardeners to prepare weed-free lawns.But no damage is caused to grass as auxin
 - (1) Does not affect mature monocotyledonous plants.

- (2) Can help in cell division in grasses, to produce growth.(3) Promotes apical dominance.
- (4) Promotes abscission of mature leaves only.
- 115. Match List-I with List-II.

	List-I		List-II
Α.	Two or more	I.	Back cross
	alternative forms		
	of a gene		
Β.	Cross of F ₁	II.	Ploidy
	progeny with		
	homozygous		
	recessive parent		
C.	Cross of F ₁	III.	Allele
	progeny with any		
	of the parents		
D.	Number of	IV.	Test cross
	Chromosome sets		
	in plant		
		1	

Choose the correct answer from the options given below:

(1) A-III, B-IV, C-I, D-II

- (2) A-IV, B-III, C-II, D-I
- (3) A-I, B-II, C-III, D-IV
- (4) A-II, B-I, C-III, D-IV
- **116.** Spindle fibers attach to kinetochores of chromosomes

during:

- (1) Anaphase (2) Telophase
- (3) Prophase (4) Metaphase
- **117.** Match List-I with List-II.

	List-I		List-II
Α.	Clostridium	Ι.	Ethanol
	butylicum		
В.	Saccharomyces	II.	Streptokinase
	cerevisiae		
C.	Trichoderma	III.	Butyric acid
	polysporum		
D.	Streptococcus sp.	IV.	Cyclosporin-A

Choose the correct answer from the options given below:

(1) A-III, B-I, C-IV, D-II

- (2) A-IV, B-I, C-III, D-II
- (3) A-III, B-I, C-II, D-IV
- (4) A-II, B-IV, C-III, D-I

- **118.** Which one of the following can be explained on the basis of Mendel's Law of Dominance?
 - **A.** Out of one pair of factors one is dominant and the other is recessive
 - **B.** Alleles do not show any expression and both the characters appear as such in F₂ generation.
 - C. Factors occur in pairs in normal diploid plants.
 - **D.** The discrete unit controlling a particular character is called factor.
 - **E.** The expression of only one of the parental characters is found in a monohybrid cross.

Choose the correct answer from the options given below:

- (1) B, C and D only
- (2) A, B, C, D and E
- (3) A, B and C only
- (4) A, C, D and E only
- **119.** What is the fate of a piece of DNA carrying only gene of interest which is transferred into an alien organism?
 - A. The piece of DNA would be able to multiply itself independently in the propeny cells of the organism.
 - B. It may get integrated into the genome of the recipient.
 - C. It may multiple and be inherited along with the host DNA.
 - D. The alien piece of DNA is not an integral part of chromosome.
 - E. It shows ability to replicate.

Choose the correct answer from the options given below:

- (1) B and C only
- (2) A and E only
- (3) A and B only
- (4) D and E only

120. How many molecules of ATP and NADPH are required for every molecule of CO₂ fixed in the Calvin cycle?

- (1) 3 molecules of ATP and 3 molecules of NADPH
- (2) 3 molecules of ATP and 2 molecules of NADPH
- (3) 2 molecules of ATP and 3 molecules of NADPH
- (4) 2 molecules of ATP and 2 molecules of NADPH
- **121.** In a plant black seed colour (BB/Bb) is dominant over white seed colour (bb). In order to find out the genotype of the black seed plant, with which of the following genotype will you cross it?
 - (1) Bb (2) BB/Bb
 - (4) bb

(3) BB

122 Leo	ithin a small molecula	r wei	aht organic compo	ound	D.	Golgi apparatus	IV.	For storing	
122. Lecithin, a small molecular weight organic compound found in living tissues, is an example of:				Colgrapparatus		nutrients			
	Glycerides				Cho	se the correct answe	r from		n helow:
	Carbohydrates				Choose the correct answer from the options given below: (1) A-III, B-IV, C-II, D-I				
	Amino acids				(1) A-II, B-II, C-III, D-IV				
· · /				. ,	A-III, B-II, C-IV, D-I				
	123. Match List-I with List-II.				A-II, B-III, C-I, D-IV				
	List-I		List-II	1	. ,	lactose present in the	o arov	wth modium of ha	etoria in
Α.	Rhizopus		Mushroom	-		ported to the cell by t	-		
		I. 		-			ne ac		
В.	Ustilago	II.	Smut fungus	-		Permease			
С.	Puccinia	III.	Bread mould	-	. ,	Polymerase			
D.	Agaricus	IV.	Rust fungus		. ,	Beta-galactosidase			
	ose the correct answe	r fron	n the options given	below:	. ,	Acetylase			
· · /	A-III, B-II, C-I, D-IV					en below are two state			· . ·
. ,	A-IV, B-III, C-II, D-I					ement I: Chromosom		•	ISIDIE
	A-III, B-II, C-IV, D-I					r light microscope du			
	A-I, B-III, C-II, D-IV					ement II: The beginin	•		
124. Tro	pical regions show gre	atest	level of species ri	chness		gnized by dissolution			
beca	ause:					e light of the above st			correct
Α.	Tropical latitudes have	rema	ained relatively		answer from the options given below:				
I	undisturbed for million	s of y	ears, hence more	time	(1) Statement I is true but Statement II is false				
,	was available for spec	ies di	versification.		(2) Statement I is false but Statement II is true				
В.	Tropical environments	are r	nore seasonal.		(3) Both Statement I and Statement II are true				
С.	More solar energy is a	vailal	ole in tropics.		(4) Both Statement I and Statement II are false				
D.	Constant environments	s pro	mote niche specia	lization	128. Formation of interfascicular cambium from fully				
Ε.	Tropical environments	are c	constant and predi	ctable.	deve	loped parenchyma ce	ells is	an example for	
Cho	ose the correct answe	r from	the option given	below:	(1)	Dedifferentiation			
(1)	A, B and E only				(2)	Maturation			
(2)	A, B and D only				(3) [Differentiation			
(3)	A, C, D and E only				(4) Redifferentiation				
(4)	A and B only				129. Give	en below are two state	ement	ts:	
125. Mat	tch List-I with List-II.	×			State	ement I: Parenchyma	ı is livi	ing but collenchy	ma is
	List-I		List-II]	dead	tissue.			
Α.	Nucleolus	Ι.	Site of	-	State	ement II: Gymnosper	ms la	ck xylem vessels	but
			formation of		pres	ence of xylem vessels	s is th	e characteristic o	f
			glycolipid		angi	osperms.			
В.	Centriole	II.	Organization	-	In th	e light of the above st	ateme	ents, choose the	correct
			like the		ansv	ver from the options g	iven b	below:	
			cartwheel		(1) \$	Statement I is true but	State	ement II is false	
C.	Leucoplasts	111.	Site for active	1	(2) \$	Statement I is false b	out St	atement II is tru	e
0.			ribosomal RNA		(3)	Both Statement I and	State	ment II are true	
			synthesis		(4)	Both Statement I and	State	ment II are false	
			3,111,0010]	130. Ider	ntify the set of correct	stater	ments:	
						,			

- A. The flowers of *Vallisneria* are colourful and produce nectar.
- B. The flowers of waterlily are not pollinated by water.
- C. In most of water-pollinated species, the pollen grains are protected from wetting.
- D. Pollen grains of some hydrophytes are long and ribbon like.
- E. In some hydrophytes, the pollen grains are carried passively inside water.

Choose the correct answer from the options given below:

(1) A, C, D and E only

(2) B, C, D and E only

- (3) C, D and E only
- (4) A, B, C and D only
- **131.** Which of the following is an example of actinomorphic flower?
 - (1) Pisum(3) Datura
- (2) Sesbania(4) Cassia
- **132.** The capacity of generate a whole plant from any cell of the plant is called:
 - (1) Differentiation
 - (2) Somatic hybridization
 - (3) Totipotency
 - (4) Micropropagation
- 133. Given below are two statements:

Statement I: Bt toxins are insect group specific and coded by a gene *cry* IAc.

Statement II: Bt toxin exists as inactive protoxin in *B. thuringiensis*. However, after ingestion by the insect the inactive protoxin gets converted into active form due to acidic pH of the insect gut.

In the light of the above statements, choose the correct answer from the options given below:

(1) Statement I is true but Statement II is false

- (2) Statement I is false but Statement II is true
- (3) Both Statement I and Statement II are true
- (4) Both Statement I and Statement II are false

134. List of endangered species was released by-

- (1) FOAM (2) IUCN
- (3) GEAC (4) WWF
- 135. The cofactor of the enzyme carboxypeptidase is:
 - (1) Flavin (2) Haem
 - (3) Zinc (4) Niacin

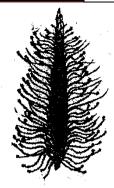
Botany: Section – B (Q. No. 136 to 150)

136. Match List I with List II

	List I		List II
Α.	Citric acid cycle	I.	Cytoplasm
В.	Glycolysis	II.	Mitochondrial matrix
C.	Electron transport	III.	Intermembrane space
	system		of mitochondria
D.	Proton gradient	IV.	Inner mitochondrial
			membrane

Choose the correct answer from the options given below:

- (1) A-III, B-IV, C-I, D-II
- (2) A-IV, B-III, C-II, D-I
- (3) A-I, B-II, C-III, D-IV
- (4) A-II, B-I, C-IV, D-III
- **137.** Which of the following statement is correct regarding the process of replication in *E.coil*?
 - The DNA dependent DNA polymerase catalyses polymerization in 5' → 3' as well as 3' → 5' direction.
 - (2) The DNA dependent DNA polymerase catalyses polymerization in $5' \rightarrow 3'$ direction.
 - (3) The DNA dependent DNA polymerase cataylses polymerization in one direction that is $3' \rightarrow 5'$.
 - (4) The DNA dependent RNA polymerase catalyses polymerization in one direction, that is 5' → 3'.


138. Match List I with List II

	List I		List II
Α.	Robert May	Ι.	Species-Area
			relationship
В.	Alexander von	II.	Long term ecosystem
	Humboldt		experiment using out
			door plots
C.	Paul Ehrlich	III.	Global species diversity
			at about 7 million
D.	David Tilman	IV.	Rivet popper hypothesis

Choose the correct answer from the options given below:

- (1) A-I, B-III, C-II, D-IV
- (2) A-III, B-IV, C-II, D-I
- (3) A-II, B-III, C-I, D-IV
- (4) A-III, B-I, C-IV, D-II

139. Identify the correct description about the given figure:

- (1) Cleistogamous flowers showing autogamy.
- (2) Compact inflorescence showing complete autogamy.
- (3) Wind pollinated plant inflorescence showing flowers with well exposed stamens.
- (4) Water pollinated flowers showing stamens with mucilaginous covering.

140. Identify the step in tricarboxylic acid cycle, which does not involve oxidation of substrate.

- (1) Succinyl-CoA \rightarrow Succinic acid
- (2) Isocitrate $\rightarrow \alpha$ -ketoglutaric acid
- (3) Malic acid \rightarrow Oxaloacetic acid
- (4) Succinic acid \rightarrow Malic acid
- 141. Given below are two statements:

Statement I: In C₃ plants, some O₂ binds to RuBisCO, hence CO₂ fixation is decreased.

Statement II: In C₄ plants, mesophyll cells show very little photorespiration while bundle sheath cells do not show photorespiration.

In the light of the above statements, choose the *correct* answer from the options given below:

(1) Statement I is true but Statement II is false

- (2) Statement I is false but Statement II is true
- (3) Both Statement I and Statement II are true
- (4) Both Statement I and Statement II are false
- 142. In an ecosystem if the Net Primary Productivity (NPP) of first trophic level is 100x(kcal m⁻²)yr⁻¹, what would be the GPP (Gross Primary Productivity) of the third trophic level of the same ecosystem?
 - (1) 10x (kcal m⁻²)yr⁻¹ 100x
 - (2) 3*x* (kcal m⁻²)yr⁻¹ *x*
 - (3) 10 (kcal m⁻²)yr⁻¹
 - (4) x (kcal m⁻²)yr⁻¹

143. Match List I with List II

	List I		List II
Α.	GLUT-4	I.	Hormone
В.	Insulin	11.	Enzyme
C.	Trypsin	III.	Intercellular ground
			substance
D.	Collagen	IV.	Enables glucose transport
			into cells

Choose the correct answer from the options given below:

- (1) A-II, B-III, C-IV, D-I
- (2) A-III, B-IV, C-I, D-II
- (3) A-IV, B-I, C-II, D-III
- (4) A-I, B-II, C-III, D-IV
- 144. Match List I with List II

	List I		List II
Α.	Frederick Griffith	l.	Genetic code
В.	Francois Jacob &	П.	Semi-conservative
	Jacque Monod		mode of DNA
			replication
C.	Har Gobind	III.	Transformation
	Khorana		
D.	Meselson & Stahl	IV.	Lac operon

Choose the correct answer from the options given below:

- (1) A-II, B-III, C-IV, D-I
- (2) A-IV, B-I, C-II, D-III
- (3) A-III, B-II, C-I, D-IV
- (4) A-III, B-IV, C-I, D-II
- 145. The DNA present in chloroplast is:
 - (1) Linear, single stranded
 - (2) Circular, single stranded
 - (3) Linear, double stranded
 - (4) Circular, double stranded

146. Spraying sugarcane crop with which of the following plant growth regulators, increases the length of stem, thus, increasing the yield?

- (1) Cytokinin (2) Abscisic acid
- (3) Auxin (4) Gibberellin
- **147.** Read the following statements and choose the set of correct statements:

In the members of Phaeophyceae,

- A. Asexual reproduction occurs usually by biflagellate zoospores.
- B. Sexual reproduction is by oogamous method only.

- C. Stored food is in the form of carbohydrates which is either mannitol or laminarin.
- D. The major pigments found are chlorophyll a, c and carotenoids and xanthophyll.
- E. Vegetative cells have a cellulosic wall, usually covered on the outside by gelatinous coating of algin. Choose the correct answer from the options given below:
- (1) A, C, D and E only
- (2) A, B, C and E only
- (3) A, B, C and D only
- (4) B, C, D and E only

148. Which of the following are fused in somatic hybridization involving two varieties of plants?

- (1) **Protoplasts** (2) Pollens
- (4) Somatic embryos (3) Callus

149. Match List I with List II

	List I		List II
Α.	Rose	I.	Twisted aestivation
В.	Pea	II.	Perigynous flower
C.	Cotton	III.	Drupe
D.	Mango	IV.	Marginal placentation

Choose the correct answer from the options given below:

- (1) A-IV, B-III, C-II, D-I
- (2) A-II, B-III, C-IV, D-I
- (3) A-II, B-IV, C-I, D-III
- (4) A-I, B-II, C-III, D-IV

150. Match List I with List II

	List I		List II
	(Types of Stamens)		(Example)
Α.	Monoadelphous	1.	Citrus
В.	Diadelphous	II.	Pea
C.	Polyadelphous	III.	Lily
D.	Epiphyllous	IV.	China-rose

Choose the correct answer from the options given below:

- (1) A-I, B-II, C-IV, D-III
- (2) A-III, B-I, C-IV, D-II
- (3) A-IV, B-II, C-I, D-III
- (4) A-IV, B-I, C-II, D-III

Zoology: Section – A (Q. No. 151 to 185)

151. Match List I with List II:

	List I		List II
Α.	Common cold	I.	Plasmodium

В.	Haemozoin	II.	Typhoid
C.	Widal test	III.	Rhinoviruses
D.	Allergy	IV.	Dust mites

Choose the correct answer from the options given below:

(1) A-III, B-I, C-II, D-IV

- (2) A-IV, B-II, C-III, D-I
- (3) A-II, B-IV, C-III, D-I
- (4) A-I, B-III, C-II, D-IV
- 152. The flippers of the Penguins and Dolphins are the example of the
 - (1) Convergent evolution
 - (2) Divergent evolution
 - (3) Adaptive radiation
 - (4) Natural selection

153. Given below are some stages of human evolution.

Arrange them in correct sequence. (Past to Recent)

- A. Homo habilis
- B. Homo sapiens
- C. Homo neanderthalensis
- D. Homo erectus

Choose the correct sequence of human evolution from the options given below:

- (1) C-B-D-A (2) A-D-C-B
- (3) D-A-C-B (4) B-A-D-C
- 154. Which one of the following factors will not affect the Hardy-Weinberg equilibrium?
 - (1) Gene migration
 - (2) Constant gene pool
 - (3) Genetic recombination
 - (4) Genetic drift
- 155. Which of the following factors are favourable for the formation of oxyhaemoglobin in alveoli?
 - (1) Low pCO₂ and High H⁺ concentration
 - (2) Low pCO₂ and High temperature
 - (3) High pO₂ and High pCO₂
 - (4) High pO₂ and Lesser H⁺ concentration

156. Which of the following is not a natural/traditional

contraceptive method?

- (1) Lactational amenorrhea
- (2) Vaults
- (3) Coitus interruptus
- (4) Periodic abstinence

157. Match List I with List II:

	List I		List II
Α.	Pons	Ι.	Provides additional space
			for Neurons, regulates
			posture and balance.
В.	Hypothalamus	II.	Controls respiration and
			gastric secretions.
C.	Medulla	III.	Connects different regions
			of the brain.
D.	Cerebellum	IV.	Neuro secretory cells

Choose the correct answer from the options given below:

- (1) A-I, B-III, C-II, D-IV
- (2) A-II, B-I, C-III, D-IV
- (3) A-II, B-III, C-I, D-IV
- (4) A-III, B-IV, C-II, D-I

158. Given below are two statements:

Statement I: The presence or absence of hymen is not a reliable indicator of virginity.

Statement II: The hymen is torn during the first coitus only.

In the light of the above statements, choose the correct answer from the options given below:

(1) Statement I is true but Statement II is false

- (2) Statement I is false but Statement II is true
- (3) Both Statement I and Statement II are true
- (4) Both Statement I and Statement II are false

159. Match List I with List II:

	List I		List II
Α.	Axoneme	I.	Centriole
В.	Cartwheel pattern	II.	Cilia and flagella
C.	Crista	III.	Chromosome
D.	Satellite	IV.	Mitochondria

Choose the correct answer from the options given below:

(1) A-II, B-IV, C-I, D-III

(2) A-II, B-I, C-IV, D-III

- (3) A-IV, B-III, C-II, D-I
- (4) A-IV, B-II, C-III, D-I

160. Match List I with List II:

	List I		List II
Α.	Typhoid	I.	Fungus
В.	Leishmaniasis	II.	Nematode
C.	Ringworm	III.	Protozoa

	D.	Filariasis	IV.	Bacteria
--	----	------------	-----	----------

Choose the correct answer from the options given below:

- (1) A-III, B-I, C-IV, D-II
- (2) A-II, B-IV, C-III, D-I
- (3) A-I, B-III, C-II, D-IV
- (4) A-IV, B-III, C-I, D-II

161. Given below are two statements:

Statement I: In the nephron, the descending limb of loop of Henle is impermeable to water and permeable to electrolytes.

Statement II: The proximal convoluted tubule is lined by simple columnar brush border epithelium and increases the surface area for reabsorption.

In the light of the above statements, choose the correct answer from the options given below:

- (1) Statement I is true but Statement II is false
- (2) Statement I is false but Statement II is true
- (3) Both Statement I and Statement II are true
- (4) Both Statement I and Statement II are false

162. Match List I with List II:

	List I		List II
Α.	α-1 antitrypsin	I.	Cotton bollworm
В.	Cry IAb	II.	ADA deficiency
C.	Cry IAc	111.	Emphysema
D.	Enzyme replacement	IV.	Corn borer
	therapy		

Choose the correct answer from the options given below:

(1) A-III, B-IV, C-I, D-II

- (2) A-II, B-IV, C-I, D-III
- (3) A-II, B-I, C-IV, D-III
- (4) A-III, B-I, C-II, D-IV

163. Match List I with List II:

	List I		List II
Α.	Non-medicated IUD	I.	Multiload 375
В.	Copper releasing IUD	II.	Progestogens
C.	Hormone releasing IUD	III.	Lippes loop
D.	Implants	IV.	LNG-20

Choose the correct answer from the options given below:

- (1) A-IV, B-I, C-II, D-III
- (2) A-III, B-I, C-IV, D-II

- (3) A-III, B-I, C-II, D-IV
- (4) A-I, B-III, C-IV, D-II

164. Consider the following statements:

- A. Annelids are true coelomates
- B. Poriferans are pseudocoelomates
- C. Aschelminthes are acoelomates
- D. Platyhelminthes are pseudocoelomates
- Choose the correct answer from the options given below:
- (1) C only (2) D only
- (3) B only (4) A only

165. Match List I with List II:

	List I		List II
Α.	Down's syndrome	I.	11 th chromosome
В.	α-Thalassemia	II.	'X' chromosome
C.	β-Thalassemia	III.	21 st chromosome
D.	Klinefelter's syndrome	IV.	16 th chromosome

Choose the correct answer from the options given below:

(1) A-III, B-IV, C-I, D-II

- (2) A-IV, B-I, C-II, D-III
- (3) A-I, B-II, C-III, D-IV
- (4) A-II, B-III, C-IV, D-I

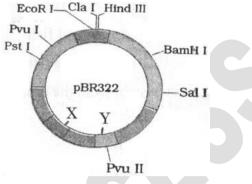
166. Following are the stages of pathway for conduction of an action potential through the heart:

- A. AV bundle
- B. Purkinje fibres
- C. AV node
- D. Bundle branches
- E. SA node

Choose the correct sequence of pathway from the options given below:

- (1) B-D-E-C-A
- (2) E-A-D-B-C
- (3) **E-C-A-D-B**
- (4) A-E-C-B-D

167. Match List I with List II:


	List I		List II
Α.	Lipase	Ι.	Peptide bond
В.	Nuclease	II.	Ester bond
C.	Protease	111.	Glycosidic bond
D.	Amylase	IV.	Phosphodiester bond

Choose the correct answer from the options given below:

(1) A-II, B-IV, C-I, D-III

- (2) A-IV, B-I, C-III, D-II
- (3) A-IV, B-II, C-III, D-I
- (4) A-III, B-II, C-I, D-IV

168. The following diagram showing restriction sites in *E.coli* cloning vector pBR322. Find the role of 'X' and 'Y' genes:

- The gene 'X' is for protein involved in replication of Plasmid and 'Y' for resistance to antibiotics.
- (2) Gene 'X' is responsible for recognition sites and 'Y is responsible for antibiotic resistance.
- (3) The gene 'X' is responsible for resistance to antibiotics and 'Y' for protein involved in the replication of Plasmid.
- (4) The gene 'X' is responsible for controlling the copy number of the linked DNA and 'Y' for protein involved in the replication of Plasmid.

169. The "Ti plasmid" of *Agrobacterium tumefaciens* stands for

(1) Tumor inducing plasmid

- (2) Temperature independent plasmid
- (3) Tumour inhibiting plasmid
- (4) Tumor independent plasmid

170. Match List I with List II:

	List I		List II
Α.	Pleurobrachia	Ι.	Mollusca
В.	Radula	II.	Ctenophora
C.	Stomochord	III.	Osteichthyes
D.	Air bladder	IV.	Hemichordata

Choose the correct answer from the options given below:

- (1) A-II, B-IV, C-I, D-III
- (2) A-IV, B-III, C-II, D-I
- (3) A-IV, B-II, C-III, D-I
- (4) A-II, B-I, C-IV, D-III

171. Which of the following statements is incorrect?

Definite Success Classes	NEET – 2024 With Answer SET –T4
--------------------------	---------------------------------

- (1) Bio-reactors are used to produce small scale bacterial cultures.
- (2) Bio-reactors have an agitator system, an oxygen delivery system and foam control system.
- (3) A bio-reactor provides optimal growth conditions for achieving the desired product.
- (4) Most commonly used bio-reactors are of stirring type.
- **172.** Which one is the correct product of DNA dependent
 - RNA polymerase to the given template?

3'TACATGGCAAATATCCATTCA5'

- (1) 5'AUGUACCGUUUAUAGGGAAGU3'
- (2) 5'ATGTACCGTTTATAGGTAAGT3'

(3) 5'AUGUACCGUUUAUAGGUAAGU3'

(4) 5'AUGUAAAGUUUAUAGGUAAGU3'

173. Match List I with List II:

	List I		List II
Α.	Cocaine	Ι.	Effective sedative in surgery
В.	Heroin	II.	Cannabis sativa
C.	Morphine	III.	Erythroxylum
D.	Marijuana	IV.	Papaver somniferum

Choose the correct answer from the options given below:

(1) A-II, B-I, C-III, D-IV

(2) A-III, B-IV, C-I, D-II

- (3) A-IV, B-III, C-I, D-II
- (4) A-I, B-III, C-II, D-IV
- 174. Match List I with List II:

	List I		List II
	(Sub Phases of		(Specific characters)
	Prophase I)		
Α.	Diakinesis	1.	Synaptonemal complex
			formation
В.	Pachytene	II.	Completion of
			terminalisation of
			chiasmata
C.	Zygotene	III.	Chromosomes look like
			thin threads
D.	Leptotene	IV.	Appearance of
			recombination nodules

Choose the correct answer from the options given below:

(1) A-II, B-IV, C-I, D-III

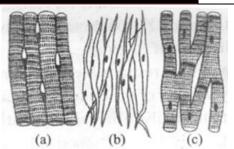
(2) A-IV, B-III, C-II, D-I

- (3) A-IV, B-II, C-III, D-I
- (4) A-I, B-II, C-IV, D-III
- **175.** In both sexes of cockroach, a pair of jointed filamentous structures called anal cerci are present on:
 - (1) 8th and 9th segment
 - (2) 11th segment
 - (3) 5th segment
 - (4) 10th segment
- **176.** Given below are two statements: one is labelled as Assertion A and the other is labelled as Reason R:

Assertion A: Breast-feeding during initial period of infant growth is recommended by doctors for bringing a healthy baby.

Reason R: Colostrum contains several antibodies absolutely essential to develop resistance for the new born baby.

In the light of the above statements, choose the most appropriate answer from the options given below:


- (1) A is correct but R is not correct.
- (2) A is not correct but R is correct.
- (3) Both A and R are correct and R is the correct explanation of A.
- (4) Both A and R are correct but R is NOT the correct explanation of A.

177. Match List I with List II:

	List I		List II
Α.	Pterophyllum	Ι.	Hag fish
В.	Myxine	II.	Saw fish
C.	Pristis	III.	Angel fish
D.	Exocoetus	IV.	Flying fish

Choose the correct answer from the options given below:

- (1) A-IV, B-I, C-II, D-III
- (2) A-III, B-II, C-I, D-IV
- (3) A-II, B-I, C-III, D-IV
- (4) A-III, B-I, C-II, D-IV
- **178.** Three types of muscles are given as a, b and c. Identify the correct matching pair along with their location in human body:

Name of muscle/location

- (1) (a) Skeletal Biceps
 - (b) Involuntary Intestine
 - (c) Smooth Heart.
- (2) (a) Involuntary Nose tip
 - (b) Skeletal Bone
 - (c) Cardiac Heart.
- (3) (a) Smooth Toes
 - (b) Skeletal Legs
 - (c) Cardiac Heart.
- (4) (a) Skeletal Triceps
 - (b) Smooth Stomach
 - (c) Cardiac Heart.
- 179. Which of the following is not a steroid hormone?
 - (1) Progesterone (2) Glucagon
 - (3) Cortisol (4) Testosterone
- **180.** Match List I with List II:

	List I		List II
Α.	Fibrous joints	Ι.	Adjacent vertebrae,
			limited movement
В.	Cartilaginous	И.	Humerus and Pectoral
	joints		girdle, rotational
			movement
C.	Hinge joints	III.	Skull, don't allow any
			movement
D.	Ball and socket	IV.	Knee, help in locomotion
	joints		

Choose the correct answer from the options given below:

- (1) A-II, B-III, C-I, D-IV
- (2) A-III, B-I, C-IV, D-II
- (3) A-IV, B-II, C-III, D-I
- (4) A-I, B-III, C-II, D-IV

181. Given below are two statements: one is labelled as

Assertion A and the other is labelled as Reason R:

Assertion A: FSH acts upon ovarian follicles in female and Leydig cells in male.

Reason R: Growing ovarian follicles secrete estrogen in female while interstitial cells secrete androgen in male human being.

In the light of the above statements, choose the correct answer from the options given below:

- (1) A is true but R is false
- (2) A is false but R is true
- (3) Both A and R are true and R is the correct explanation of A.
- (4) Both A and R are true but R is NOT the correct explanation of A.
- 182. Match List I with List II:

	List I		List II
Α.	Expiratory	Ŀ	Expiratory reserve volume
	capacity		+ Tidal volume + Inspiratory
			reserve volume
В.	Functional	Ч.	Tidal volume + Expiratory
	residual		reserve volume
	capacity		
C.	Vital	III.	Tidal volume + Inspiratory
	capacity		reserve volume
D.	Inspiratory	IV.	Expiratory reserve volume
	capacity		+ Residual volume

Choose the correct answer from the options given below:

- (1) A-II, B-I, C-IV, D-III
- (2) A-I, B-III, C-II, D-IV
- (3) A-II, B-IV, C-I, D-III
- (4) A-III, B-II, C-IV, D-I

183. Following are the stages of cell division:

- A. Gap 2 phase
- B. Cytokinesis
- C. Synthesis phase
- D. Karyokinesis
- E. Gap 1 phase

Choose the correct sequence of stages from the options given below:

- (1) B-D-E-A-C
- (2) E-C-A-D-B
- (3) C-E-D-A-B (4) E-B-D-A-C
- 184. Which of the following are Autoimmune disorders?
 - A. Myasthenia gravis
 - B. Rheumatoid arthritis
 - C. Gout
 - D. Muscular dystrophy

SET -T4

Definite Success Classes NEET – 2024 With Ans	wer S
E. Systemic Lupus Erythematosus (SLE)	188.
Choose the most appropriate answer from the options	Γ
given below:	
(1) B, C & E only	
(2) C, D & E only	
(3) A, B & D only	-
(4) A, B & E only	
185. Which of the following is not a component of Fallopian	0
tube?	(
(1) Infundibulum (2) Ampulla	(
(3) Uterine fundus (4) Isthmus	(
	(
Zoology: Section – B (Q. No. 186 to 200)	189.
186. As per ABO blood grouping system, the blood group of	A
father is B^+ , mother is A^+ and child is O^+ . Their respective	E
genotype can be	0
A. I ^B i / I ^A i / ii	C
B. I ^B I ^B / I ^A I ^A / ii	E
C. I ^A I ^B / iI ^A / I ^B i	C
D. I ^A i / I ^B i / I ^A i	g
E. iI ^B / iI ^A / I ^A I ^B	(
Choose the most appropriate answer from the options	(
given below:	(
(1) C & B only (2) D & E only	(
(3) A only (4) B only	190.
187. Match List I with List II:	5

	List I		List II
Α.	Exophthalmic	I.	Excess secretion of
	goiter		cortisol, moon face &
			hyperglycemia
В.	Acromegaly	II.	Hypo-secretion of thyroid
			hormone and stunted
			growth.
C.	Cushing's	411.	Hyper secretion of thyroid
	syndrome		hormone & protruding eye
			balls.
D.	Cretinism	IV.	Excessive secretion of
			growth hormone.

Choose the correct answer from the options given below:

- (1) A-III, B-IV, C-II, D-I
- (2) A-III, B-IV, C-I, D-II
- (3) A-I, B-III, C-II, D-IV
- (4) A-IV, B-II, C-I, D-III

Match List I with List II:

	List I		List II
Α.	Mesozoic Era	Ι.	Lower invertebrates
В.	Proterozoic Era	II.	Fish & Amphibia
C.	Cenozoic Era	III.	Birds & Reptiles
D.	Paleozoic Era	IV.	Mammals

Choose the correct answer from the options given below:

- (1) A-I, B-II, C-IV, D-III
- (2) A-III, B-I, C-IV, D-II
- (3) A-II, B-I, C-III, D-IV
- (4) A-III, B-I, C-II, D-IV

The following are the statements about non-chordates:

- A. Pharynx is perforated by gill slits.
- B. Notochord is absent.
- C. Central nervous system is dorsal.
- D. Heart is dorsal if present.
- E. Post anal tail is absent.

Choose the most appropriate answer from the options aiven below:

(1) B, D & E only

- (2) B, C & D only
- (3) A & C only
- (4) A, B & D only

Given below are two statements:

Statement I: The cerebral hemispheres are connected by nerve tract known as corpus callosum.

Statement II: The brain stem consists of the medulla oblongata, pons and cerebrum.

In the light of the above statements, choose the most appropriate answer from the options given below:

- (1) Statement I is correct but Statement II is incorrect.
- (2) Statement I is incorrect but Statement II is correct.
- (3) Both Statement I and Statement II are correct.
- (4) Both Statement I and Statement II are incorrect.
- 191. Match List I with List II:

	List I		List II
Α.	Unicellular glandular	Ι.	Salivary glands
	epithelium		
В.	Compound epithelium	II.	Pancreas
C.	Multicellular glandular	III.	Goblet cells of
	epithelium		alimentary canal

Classes NEET – 2024 With Answer SET –	Г4
---------------------------------------	----

D.	Endocrine glandular	IV.	Moist surface of	
	epithelium		buccal cavity	

Choose the correct answer from the options given below:

(1) A-III, B-IV, C-I, D-II

- (2) A-II, B-I, C-IV, D-III
- (3) A-II, B-I, C-III, D-IV
- (4) A-IV, B-III, C-I, D-II

192. Match List I with List II:

	List I		List II
Α.	P wave	Ι.	Heart muscles are
			electrically silent.
В.	QRS	II.	Depolarisation of ventricles.
	complex		
C.	T wave	III.	Depolarisation of atria.
D.	T-P gap	IV.	Repolarisation of ventricles.

Choose the correct answer from the options given below:

- (1) A-II, B-III, C-I, D-IV
- (2) A-IV, B-II, C-I, D-III
- (3) A-I, B-III, C-IV, D-II
- (4) A-III, B-II, C-IV, D-I

193. Given below are two statements:

Statement I: Mitochondria and chloroplasts are both double membrane bound organelles.

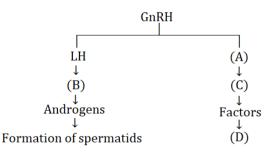
Statement II: Inner membrane of mitochondria is relatively less permeable, as compared to chloroplast. In the light of the above statements, choose the most appropriate answer from the options given below:

- (1) Statement I is correct but Statement II is incorrect.
- (2) Statement I is incorrect but Statement II is correct.
- (3) Both Statement I and Statement II are correct.
- (4) Both Statement I and Statement II are incorrect.
- **194.** Match List I with List II related to digestive system of cockroach.

	List I		List II
Α.	The structures used for	I.	Gizzard
	storing of food.		
В.	Ring of 6-8 blind tubules	II.	Gastric Caeca
	at junction of foregut and		
	midgut.		

C.	Ring of 100-150 yellow	III.	Malpighian
	coloured thin filaments at		tubules
	junction of midgut and		
	hindgut.		
D.	The structures used for	IV.	Crop
	grinding the food.		

Choose the correct answer from the options given below:


- (1) A-IV, B-III, C-II, D-I
- (2) A-III, B-II, C-IV, D-I
- (3) A-IV, B-II, C-III, D-I
- (4) A-I, B-II, C-III, D-IV

195. Match List I with List II:

	List I		List II
Α.	RNA polymerase III	I.	snRNPs
В.	Termination of	II.	Promotor
	transcription		
C.	Splicing of Exons	III.	Rho factor
D.	TATA box	IV.	SnRNAs, tRNA

Choose the correct answer from the options given below:

- (1) A-III, B-IV, C-I, D-II
- (2) **A-IV, B-III, C-I, D-II**
- (3) A-II, B-IV, C-I, D-III
- (4) A-III, B-II, C-IV, D-I
- **196.** Identify the correct option (A), (B), (C), (D) with respect to spermatogenesis.

- (1) FSH, Sertoli cells, Leydig cells, spermatogenesis.
- (2) ICSH, Leydig cells, Sertoli cells, spermatogenesis.
- (3) FSH, Leydig cells, Sertoli cells, spermiogenesis
- (4) ICSH, Interstitial cells, Leydig cells, spermiogenesis.
- **197.** Choose the correct statement given below regarding juxta medullary nephron.
 - (1) Loop of Henle of juxta medullary nephron runs deep into medulla.
 - (2) Juxta medullary nephrons outnumber the cortical nephrons.

- Juxta medullary nephrons are located in the columns of Bertini.
- (4) Renal corpuscle of juxta medullary nephron lies in the outer portion of the renal medulla.

198. Given below are two statements:

Statement I: Gause's competitive exclusion principle states that two closely related species competing for different resources cannot exist indefinitely.

Statement II: According to Gause's principle, during competition, the inferior will be eliminated. This may be true if resources are limiting.

In the light of the above statements, choose the correct answer from the options given below:

(1) Statement I is true but Statement II is false.

- (2) Statement I is false but Statement II is true.
- (3) Both Statement I and Statement II are true.
- (4) Both Statement I and Statement II are false.

199. Given below are two statements:

Statement I: Bone marrow is the main lymphoid organ where all blood cells including lymphocytes are produced.

Statement II: Both bone marrow and thymus provide micro environments for the development and maturation of T-lymphocytes.

In the light of the above statements, choose the most appropriate answer from the options given below:

(1) Statement I is correct but Statement II is incorrect.

- (2) Statement I is incorrect but Statement II is correct.
- (3) Both Statement I and Statement II are correct.
- (4) Both Statement I and Statement II are incorrect.
- **200.** Regarding catalytic cycle of an enzyme action, select the correct sequential steps:
 - A. Substrate enzyme complex formation.
 - B. Free enzyme ready to bind with another substrate.
 - C. Release of products.
 - D. Chemical bonds of the substrate broken.
 - E. Substrate binding to active site.

Choose the correct answer from the options given below:

- (1) B, A, C, D, E (2) E, D, C, B, A
- (3) E, A, D, C, B (4) A, E, B, D, C